尊龙凯时人生就是博

所在位置: 首页 > 技术支持 > 技术详情

揭示外侧OFC对S1的指导在小鼠的灵活决策中发挥着重要作用

原始文献:Banerjee, A., Parente, G., Teutsch, J.et al.Value-guided remapping of sensory cortex by lateral orbitofrontal cortex.Nature585,245–250 (2020).

动物具有根据环境变化适应性调节自身行为的能力。适应性行为的一个重点是价值引导的决策(value-guided decision making),即动物可根据过去得到的奖赏反馈情况灵活地改变自身的行为模式。行为灵活性的降低是自闭症、精神分裂症等ji病的症状之一。在哺乳动物中,前额叶皮层(prefrontal cortex)在灵活的决策行为中起着重要的作用,特别是其中的眼眶额叶皮层(orbitofrontal cortex,OFC)。动物通过感觉皮层处理接受到的各种外界刺激,对于动物做出恰当的决策是不可或缺的。OFC与感觉皮层和皮层下处理奖赏信息的脑分区有着丰富的连接,但OFC在灵活决策中具体发挥了什么作用,以及OFC对感觉皮层的影响仍是未知的。这篇文章中,研究人员用一个反转学习任务(reversal learning task)训练小鼠,发现外侧OFC神经元能够指导初级躯体感觉皮层(somatosensory cortex,S1)中部分神经元的重新映射(remapping),与小鼠的灵活决策行为密切相关。

研究人员通过一系列实验和分析,表明了外侧OFC对S1的指导在小鼠的灵活决策中发挥着重要作用。初次习得任务时,S1的部分神经元表现出了对带来奖励的刺激的选择性,规则改变后,外侧OFC神经元对S1的投射传达了指导信号,驱动了S1神经元对刺激的重新映射,使得小鼠可以灵活的改变其决策行为。

在反转学习任务中,小鼠的头部被固定,面前有一个伸舌头就可以碰到的出水口,它们通过胡须感受靠近的砂纸,不同粗糙程度的砂纸分别代表着舔/不舔的信号,只有在正确的信号下舔出水口,小鼠才能得到液体奖励。当小鼠学会这一任务后,研究人员将不同砂纸代表的信号反转,直至小鼠学会新的任务为止。


摘自原文Fig1,左图为行为学实验的设置,右图显示小鼠随着训练任务进行而展现的学习情况,可以看出正确率(绿)随着训练的进行不断提高,规则反转后正确率瞬间降低,随着继续学习又提高到高水平。错误率(红,未考虑遗漏掉正确信号的情况)则相反。


研究人员发现,用化学遗传学方法抑制S1(S1处理来自胡须的触觉信息)的神经元后,小鼠将不能习得Z初的任务。而抑制外侧OFC的神经元,则会阻碍小鼠习得反转后的新规则(rule switch)。不过抑制外侧OFC并不影响小鼠学会Z初的任务,也不影响小鼠将别的刺激(第三种砂纸)与奖励联系起来。

摘自原文Fig1,用病毒注射法向小鼠OFC或S1注射含有抑制型通道hM4Di的病毒,通过每天注射CNO抑制特定脑区的神经元活动。左图显示,抑制S1后小鼠无法习得Z初的任务。中图显示,规则反转后抑制外侧OFC,小鼠无法习得反转后的新规则。右图显示,抑制外侧OFC并不影响小鼠Z初的学习,以及对新刺激的学习。


研究人员接下来用在体双光子钙成像观察记录了表达有GCaMP6f的小鼠皮层2/3层神经元的钙信号。下图左侧显示了外侧OFC单个神经元的活动情况,左上为成功得到奖励的情况,左下为正确判断没有奖励的情况。可以看出该神经元的活动主要集中在奖励给予阶段(R,reward),小鼠在学会任务后(LE),神经元的活动有一定上升。而规则反转后,当小鼠获得意料外的奖励时(RN,原规则下无法得到奖励,但小鼠在新规则下获得了奖励),神经元活动显著上升,而当小鼠学会新规则后(RE)神经元活动降低。外侧OFC神经元的整体活动也与此一致,即展现出了规则反转后神经元活动的显著上升。


摘自原文Fig2,左图显示外侧OFC单个神经元的活动,右图显示记录到的外侧OFC神经元整体活动情况。

对S1神经元的观测则展现了不同的特点。想对于外侧OFC的神经元,S1神经元的活动更多位于刺激阶段(S,stimulus),且面对有奖赏刺激和无奖赏刺激均有反应。从S1神经元的整体活动来看,无论是初始学习还是规则反转后的学习,在小鼠学会任务后(LE和RE),S1神经元在面对有奖赏刺激时的活动都显著更高(在学会任务之前则是无差异的)。

摘自原文Fig2,左图显示S1单个神经元的活动,右图显示记录到的S1神经元整体活动情况。

上述结果提示,外侧OFC的神经元对奖励结果有着较强的响应,而S1的神经元则更多的响应感受到的刺激,并且会随着小鼠的学习,对导向奖励的刺激表现出更强的响应。研究人员接下来利用记录到的整个训练周期中神经元的活动情况,比较每个神经元在规则反转前后面对不同刺激(正确判断情况下的有奖励刺激-hit和无奖励刺激-CR)的响应程度,计算了每个神经元的不同情况下的选择系数(selectivity index,细节见Methods,大致就是神经元活动在面对有无奖励的刺激下的差异程度)。通过比较不同学习阶段小鼠神经元的选择系数,可以判断神经元究竟是对奖励结果还是刺激本身具有选择性。研究人员发现外侧OFC的神经元始终表现出较高的结果选择性(即始终有高的选择系数,神经元响应有奖励的刺激);S1的神经元有很大一部分一开始表现出刺激选择性(即规则反转后,神经元的选择系数也反转,响应原规则下带来奖励的刺激),当小鼠学会反转的规则后,S1神经元又变得偏向于结果选择。

摘自原文Fig3,每张图的每个点表示一个神经元,分布在右上角的点表示其活动对奖励有选择性,右下角的点则表示神经元对带来奖励的刺激有选择性。S1的神经元在规则反转后展现出对(原规则下带来奖励的)刺激的选择性(左下),而当小鼠习得反转后的规则后(右下),神经元更多偏向于结果(奖励)的选择。

小鼠决策行为的灵活性就体现在对反转规则的重新学习上,重新学习过程也带来了S1神经元活性的重新映射(即选择性改变)。通过向小鼠的S1注射表达荧光蛋白的逆行AAV病毒,研究人员验证了外侧OFC到S1的神经投射。用化学遗传学方法抑制外侧OFC的神经元后,S1的神经元的选择性不再改变。下图为小鼠不同神经元在奖励给予阶段活动情况的选择系数分布图。作为对照的S1(中)神经元的选择系数有明显的重新排布特征,即选择系数由正到负(表示规则反转后,神经元依然对原规则下的奖励刺激起响应),经过重新学习后选择系数又变回正(神经元对新规则下的奖励刺激其响应),而抑制OFC后的S1神经元(下)则没有此特点。


自原文Fig4,小鼠神经元在奖励给予阶段活动情况的选择系数分布图。

综合来看,研究人员通过上述一系列实验和分析,表明了外侧OFC对S1的指导在小鼠的灵活决策中发挥着重要作用。初次习得任务时,S1的部分神经元表现出了对带来奖励的刺激的选择性,规则改变后,外侧OFC神经元对S1的投射传达了指导信号,驱动了S1神经元对刺激的重新映射(remapping),使得小鼠可以灵活的改变其决策行为。

如果您也对动物实验感兴趣,欢迎关注和推荐关注知乎帐号:脑苛学 和 \/信公众号:bioviewer,专注于动物神经科学与行为学的实验知识的方法传播与分享交流,您可以推荐给您身边的朋友、同学以及老师,尊龙凯时人生就是博会定期更新您需要的相关实验方法的视频和文章,希望能对大家带来帮助!